Displaying 161 – 180 of 3301

Showing per page

A parabolic system involving a quadratic gradient term related to the Boussinesq approximation.

Jesús Ildefonso Díaz, Jean-Michel Rakotoson, Paul G. Schmidt (2007)

RACSAM

We propose a modification of the classical Boussinesq approximation for buoyancy-driven flows of viscous, incompressible fluids in situations where viscous heating cannot be neglected. This modification is motivated by unresolved issues regarding the global solvability of the original system. A very simple model problem leads to a coupled system of two parabolic equations with a source term involving the square of the gradient of one of the unknowns. Based on adequate notions of weak and strong...

A phase-field model of grain boundary motion

Akio Ito, Nobuyuki Kenmochi, Noriaki Yamazaki (2008)

Applications of Mathematics

We consider a phase-field model of grain structure evolution, which appears in materials sciences. In this paper we study the grain boundary motion model of Kobayashi-Warren-Carter type, which contains a singular diffusivity. The main objective of this paper is to show the existence of solutions in a generalized sense. Moreover, we show the uniqueness of solutions for the model in one-dimensional space.

A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations

Martin A. Grepl, Anthony T. Patera (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we extend the reduced-basis methods and associated a posteriori error estimators developed earlier for elliptic partial differential equations to parabolic problems with affine parameter dependence. The essential new ingredient is the presence of time in the formulation and solution of the problem – we shall “simply” treat time as an additional, albeit special, parameter. First, we introduce the reduced-basis recipe – Galerkin projection onto a space W N spanned by solutions of the...

A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations

Martin A. Grepl, Anthony T. Patera (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this paper, we extend the reduced-basis methods and associated a posteriori error estimators developed earlier for elliptic partial differential equations to parabolic problems with affine parameter dependence. The essential new ingredient is the presence of time in the formulation and solution of the problem – we shall “simply” treat time as an additional, albeit special, parameter. First, we introduce the reduced-basis recipe – Galerkin projection onto a space WN spanned by solutions...

A posteriori error control for the Allen–Cahn problem : circumventing Gronwall’s inequality

Daniel Kessler, Ricardo H. Nochetto, Alfred Schmidt (2004)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

Phase-field models, the simplest of which is Allen–Cahn’s problem, are characterized by a small parameter ε that dictates the interface thickness. These models naturally call for mesh adaptation techniques, which rely on a posteriori error control. However, their error analysis usually deals with the underlying non-monotone nonlinearity via a Gronwall argument which leads to an exponential dependence on ε - 2 . Using an energy argument combined with a topological continuation argument and a spectral...

A posteriori error control for the Allen–Cahn problem: circumventing Gronwall's inequality

Daniel Kessler, Ricardo H. Nochetto, Alfred Schmidt (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Phase-field models, the simplest of which is Allen–Cahn's problem, are characterized by a small parameter ε that dictates the interface thickness. These models naturally call for mesh adaptation techniques, which rely on a posteriori error control. However, their error analysis usually deals with the underlying non-monotone nonlinearity via a Gronwall argument which leads to an exponential dependence on ε-2. Using an energy argument combined with a topological continuation argument and...

A posteriori error estimates for a nonconforming finite element discretization of the heat equation

Serge Nicaise, Nadir Soualem (2005)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The paper presents an a posteriori error estimator for a (piecewise linear) nonconforming finite element approximation of the heat equation in d , d = 2 or 3, using backward Euler’s scheme. For this discretization, we derive a residual indicator, which use a spatial residual indicator based on the jumps of normal and tangential derivatives of the nonconforming approximation and a time residual indicator based on the jump of broken gradients at each time step. Lower and upper bounds form the main results...

A posteriori error estimates for a nonconforming finite element discretization of the heat equation

Serge Nicaise, Nadir Soualem (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The paper presents an a posteriori error estimator for a (piecewise linear) nonconforming finite element approximation of the heat equation in d , d=2 or 3, using backward Euler's scheme. For this discretization, we derive a residual indicator, which use a spatial residual indicator based on the jumps of normal and tangential derivatives of the nonconforming approximation and a time residual indicator based on the jump of broken gradients at each time step. Lower and upper bounds form the main...

A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations

Mario Ohlberger (2001)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear convection-diffusion-reaction equation c t + · ( 𝐮 f ( c ) ) - · ( D c ) + λ c = 0 . The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the L 1 -norm, independent of the diffusion parameter D . The resulting a posteriori error estimate is used to define an grid adaptive solution algorithm for the finite volume scheme. Finally numerical experiments underline the applicability...

A posteriori error estimates for vertex centered finite volume approximations of convection-diffusion-reaction equations

Mario Ohlberger (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is devoted to the study of a posteriori error estimates for the scalar nonlinear convection-diffusion-reaction equation c t + · ( 𝐮 f ( c ) ) - · ( D c ) + λ c = 0 . The estimates for the error between the exact solution and an upwind finite volume approximation to the solution are derived in the L1-norm, independent of the diffusion parameter D. The resulting a posteriori error estimate is used to define an grid adaptive solution algorithm for the finite volume scheme. Finally numerical experiments underline the applicability...

A Posteriori Error Estimation for Reduced Order Solutions of Parametrized Parabolic Optimal Control Problems

Mark Kärcher, Martin A. Grepl (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the efficient and reliable solution of linear-quadratic optimal control problems governed by parametrized parabolic partial differential equations. To this end, we employ the reduced basis method as a low-dimensional surrogate model to solve the optimal control problem and develop a posteriori error estimation procedures that provide rigorous bounds for the error in the optimal control and the associated cost functional. We show that our approach can be applied to problems involving...

A posteriori error estimation for semilinear parabolic optimal control problems with application to model reduction by POD

Eileen Kammann, Fredi Tröltzsch, Stefan Volkwein (2013)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We consider the following problem of error estimation for the optimal control of nonlinear parabolic partial differential equations: let an arbitrary admissible control function be given. How far is it from the next locally optimal control? Under natural assumptions including a second-order sufficient optimality condition for the (unknown) locally optimal control, we estimate the distance between the two controls. To do this, we need some information on the lowest eigenvalue of the reduced Hessian....

A posteriori estimates for the Cahn–Hilliard equation with obstacle free energy

Ľubomír Baňas, Robert Nürnberg (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

We derive a posteriori estimates for a discretization in space of the standard Cahn–Hilliard equation with a double obstacle free energy. The derived estimates are robust and efficient, and in practice are combined with a heuristic time step adaptation. We present numerical experiments in two and three space dimensions and compare our method with an existing heuristic spatial mesh adaptation algorithm.

A posteriori upper and lower error bound of the high-order discontinuous Galerkin method for the heat conduction equation

Ivana Šebestová (2014)

Applications of Mathematics

We deal with the numerical solution of the nonstationary heat conduction equation with mixed Dirichlet/Neumann boundary conditions. The backward Euler method is employed for the time discretization and the interior penalty discontinuous Galerkin method for the space discretization. Assuming shape regularity, local quasi-uniformity, and transition conditions, we derive both a posteriori upper and lower error bounds. The analysis is based on the Helmholtz decomposition, the averaging interpolation...

Currently displaying 161 – 180 of 3301