Displaying 81 – 100 of 125

Showing per page

The wave map problem. Small data critical regularity

Igor Rodnianski (2005/2006)

Séminaire Bourbaki

The paper provides a description of the wave map problem with a specific focus on the breakthrough work of T. Tao which showed that a wave map, a dynamic lorentzian analog of a harmonic map, from Minkowski space into a sphere with smooth initial data and a small critical Sobolev norm exists globally in time and remains smooth. When the dimension of the base Minkowski space is ( 2 + 1 ) , the critical norm coincides with energy, the only manifestly conserved quantity in this (lagrangian) theory. As a consequence,...

Theory and numerical approximations for a nonlinear 1 + 1 Dirac system

Nikolaos Bournaveas, Georgios E. Zouraris (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order a priori error estimates in various discrete norms and showing results from numerical experiments.

Theory and numerical approximations for a nonlinear 1 + 1 Dirac system

Nikolaos Bournaveas, Georgios E. Zouraris (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

We consider a nonlinear Dirac system in one space dimension with periodic boundary conditions. First, we discuss questions on the existence and uniqueness of the solution. Then, we propose an implicit-explicit finite difference method for its approximation, proving optimal order a priori error estimates in various discrete norms and showing results from numerical experiments.

Thick obstacle problems with dynamic adhesive contact

Jeongho Ahn (2008)

ESAIM: Mathematical Modelling and Numerical Analysis

In this work, we consider dynamic frictionless contact with adhesion between a viscoelastic body of the Kelvin-Voigt type and a stationary rigid obstacle, based on the Signorini's contact conditions. Including the adhesion processes modeled by the bonding field, a new version of energy function is defined. We use the energy function to derive a new form of energy balance which is supported by numerical results. Employing the time-discretization, we establish a numerical formulation and investigate...

Time domain simulation of a piano. Part 1: model description

J. Chabassier, A. Chaigne, P. Joly (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The purpose of this study is the time domain modeling of a piano. We aim at explaining the vibratory and acoustical behavior of the piano, by taking into account the main elements that contribute to sound production. The soundboard is modeled as a bidimensional thick, orthotropic, heterogeneous, frequency dependent damped plate, using Reissner Mindlin equations. The vibroacoustics equations allow the soundboard to radiate into the surrounding air, in which we wish to compute the complete acoustical...

Currently displaying 81 – 100 of 125