Tamagawa number of reductive algebraic groups
Explicit formulae for the number of triplets of consecutive squares in a Galois field are given.
We determine the algebraic groups which have a close relation to the Roth inequalities.
In this paper we extend the arithmetic Grothendieck-Riemann-Roch Theorem to projective morphisms between arithmetic varieties that are not necessarily smooth over the complex numbers. The main ingredient of this extension is the theory of generalized holomorphic analytic torsion classes previously developed by the authors.
We construct del Pezzo surfaces of degree violating the Hasse principle explained by the Brauer-Manin obstruction. Using these del Pezzo surfaces, we show that there are algebraic families of surfaces violating the Hasse principle explained by the Brauer-Manin obstruction. Various examples are given.
We show how the size of the Galois groups of iterates of a quadratic polynomial f can be parametrized by certain rational points on the curves Cₙ: y² = fⁿ(x) and their quadratic twists (here fⁿ denotes the nth iterate of f). To that end, we study the arithmetic of such curves over global and finite fields, translating key problems in the arithmetic of polynomial iteration into a geometric framework. This point of view has several dynamical applications. For instance, we establish a maximality theorem...
This paper contains an overview of the known cases of the Bloch-Kato conjecture. It does not attempt to overview the known cases of the Beilinson conjecture and also excludes the Birch and Swinnerton-Dyer point. The paper starts with a brief review of the formulation of the general conjecture. The final part gives a brief sketch of the proofs in the known cases.