Fonction L des courbes modulaires
L’objet de cet article est d’obtenir une formule pour la fonction zêta des hauteurs classique à partir de la fonction zêta des hauteurs multiple de La Bretèche, et d’utiliser cette formule pour prolonger de manière méromorphe la fonction zêta des hauteurs. En particulier, il est montré que celle-ci peut être prolongée au demi-plan et que la frontière naturelle de son domaine naturel de méromorphie est .
On construit une fonction -adique arithmétique associée à une courbe elliptique ayant bonne réduction en , fonction à valeurs dans son module de Dieudonné en . On donne le lien conjectural avec les fonctions de Mazur et Swinnerton-Dyuer d’une part et les éléments de Beilinson-Kato d’autre part et on énonce une conjecture principale". On calcule aussi les termes dominants de cette fonction -adique aux entiers en liaison avec les conjectures -adiques du tupe Birch et Swinnerton-Dyer et Bloch-Kato....
Ce papier présente les récents progrès concernant les fonctions zêta des hauteurs associées à la conjecture de Manin. En particulier, des exemples où on peut prouver un prolongement méromorphe de ces fonctions sont détaillés.
On étudie la fonction zêta d’Igusa ζ(P,s) associée à une hypersurface projective complexe P = 0. On montre qu’elle est une intégrale d’Euler généralisée et on précise le système différentiel A-hypergéométrique qu’elle satisfait. On indique un algorithme pour la détermination explicite d’une équation aux différences satisfaite par ζ(P,s). On calcule explicitement cette fonction pour quelques cas particuliers. On prouve que la fonction zêta associée au résultant n’est pas une somme de produits de...