Relèvement de schémas et algèbres de Monsky-Washnitzer : théorèmes d’équivalence et de pleine fidélité
Dans un travail précédent nous avons défini et étudié la fonction zêta associée à une représentation d’une algèbre de Jordan euclidienne déployée et à un réseau dans l’espace de la représentation. Nous avons démontré la convergence dans un demi-plan, établi l’existence d’un prolongement méromorphe et d’une équation fonctionnelle scalaire. Cette fonction est une généralisation de la fonction zêta de Koecher; elle est donnée dans son domaine de convergence, par une série qui somme sur certains éléments...
Nous construisons un complexe de représentations localement analytiques de , associé à certaines représentations semi-stables de dimension du groupe de Galois absolu de . Nous montrons ensuite que l’on peut retrouver le -module filtré de la représentation galoisienne en considérant les morphismes, dans la catégorie dérivée des -modules, de ce complexe dans le complexe de de Rham de l’espace de Drinfel’d de dimension . La preuve requiert le calcul de certains espaces de cohomologie localement...
Les deux résultats principaux de cette note sont d’une part que si est une représentation de de dimension qui est potentiellement trianguline, alors vérifie au moins une des propriétés suivantes (1) est trianguline déployée (2) est une somme de caractères ou une induite (3) est une représentation de de Rham tordue par un caractère, et d’autre part qu’il existe des représentations de de dimension qui ne sont pas potentiellement triangulines.
I discuss some algorithms for computing the zeta function of an algebraic variety over a finite field which are based upon rigid cohomology. Two distinct approaches are illustrated with a worked example.