On modular representations of Gal (.../Q) arising from modular forms.
In this paper we study certain moduli spaces of Barsotti-Tate groups constructed by Rapoport and Zink as local analogues of Shimura varieties. More precisely, given an isogeny class of Barsotti-Tate groups with unramified additional structures, we investigate how the associated (non-basic) moduli spaces compare to the (basic) moduli spaces associated with its isoclinic constituents. This aspect of the geometry of the Rapoport-Zink spaces is closely related to Kottwitz’s prediction that their -adic...
This article confirms a consequence of the non-abelian Iwasawa main conjecture. It is proved that under a technical condition the étale cohomology groups , where is a smooth, projective scheme, are generated by twists of norm compatible units in a tower of number fields associated to . Using the “Bloch-Kato-conjecture” a similar result is proven for motivic cohomology with finite coefficients.
Let be a central -curve over a polyquadratic field . In this article we give an upper bound for prime divisors of the order of the -rational torsion subgroup (see Theorems 1.1 and 1.2). The notion of central -curves is a generalization of that of elliptic curves over . Our result is a generalization of Theorem 2 of Mazur [12], and it is a precision of the upper bounds of Merel [15] and Oesterlé [17].
Let be the ring of integers of a totally real field of degree . We study the reduction of the moduli space of separably polarized abelian -varieties of dimension modulo for a fixed prime . The invariants and related conditions for the objects in the moduli space are discussed. We construct a scheme-theoretic stratification by -types on the Rapoport locus and study the relation with the slope stratification. In particular, we recover the main results of Goren and Oort [J. Alg. Geom.,...