Fluids with anisotropic viscosity
Motivated by rotating fluids, we study incompressible fluids with anisotropic viscosity. We use anisotropic spaces that enable us to prove existence theorems for less regular initial data than usual. In the case of rotating fluids, in the whole space, we prove Strichartz-type anisotropic, dispersive estimates which allow us to prove global wellposedness for fast enough rotation.
We study the existence and the uniqueness of a solution to the linear Fokker-Planck equation in a bounded domain of when is a “confinement” vector field. This field acting for instance like the inverse of the distance to the boundary. An illustration of the obtained results is given within the framework of fluid mechanics and polymer flows.
The existence of a global motion of magnetohydrodynamic fluid in a domain bounded by a free surface and under the external electrodynamic field is proved. The motion is such that the velocity and magnetic field are small in the H³-space.
We prove the existence of regular solution to a system of nonlinear equations describing the steady motions of a certain class of non-Newtonian fluids in two dimensions. The equations are completed by requirement that all functions are periodic.
Inspired by the work of Zhidkov on the KdV equation, we perform a construction of weighted Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. The resulting measures are supported by Sobolev spaces of increasing regularity. We also prove a property on the support of these measures leading to the conjecture that they are indeed invariant by the flow of the Benjamin-Ono equation.
We introduce a new class of nonlocal kinetic equations and nonlocal Fokker-Planck equations associated with an effective generalized thermodynamical formalism. These equations have a rich physical and mathematical structure that can describe phase transitions and blow-up phenomena. On general grounds, our formalism can have applications in different domains of physics, astrophysics, hydrodynamics and biology. We find an aesthetic connexion between topics (stars, vortices, bacteries,...) which were...
We describe some recent results on a specific nonlinear hydrodynamical problem where the geometric approach gives insight into a variety of aspects.
We survey two problems illustrating geometric-topological and Hamiltonian methods in fluid mechanics: energy relaxation of a magnetic field and conservation laws for ideal fluid motion. More details and results, as well as a guide to the literature on these topics can be found in [3].
On sait depuis Maslov, Arnold, etc... associer à presque tout germe de variété lagrangienne ou legendrienne lisse une classe de fonctions oscillantes qui sous des hypothèses génériques à la Thom fournissent des modèles universels pour le comportement d’une onde lumineuse au voisinage de la caustique.Le présent article étend cette construction à une classe de situations où la variété caractéristique est un germe singulier (union de composantes lisses), qui peut néanmoins être stable en ce sens que...
This paper is devoted to the global attractors of the tropical climate model. We first establish the global well-posedness of the system. Then by studying the existence of bounded absorbing sets, the global attractor is constructed. The estimates of the Hausdorff dimension and of the fractal dimension of the global attractor are obtained in the end.
The self-consistent chemotaxis-fluid system is considered under no-flux boundary conditions for and the Dirichlet boundary condition for on a bounded smooth domain