Existence de solutions avec petite donnée initiale dans pour une équation de Dirac non linéaire
We study the well-posedness of an unsteady fluid-structure interaction problem. We consider a viscous incompressible flow, which is modelled by the Navier-Stokes equations. The structure is a collection of rigid moving bodies. The fluid domain depends on time and is defined by the position of the structure, itself resulting from a stress distribution coming from the fluid. The problem is then nonlinear and the equations we deal with are coupled. We prove its local solvability in time through two...
We consider the problem of influencing the motion of an electrically conducting fluid with an applied steady magnetic field. Since the flow is originating from buoyancy, heat transfer has to be included in the model. The stationary system of magnetohydrodynamics is considered, and an approximation of Boussinesq type is used to describe the buoyancy. The heat sources given by the dissipation of current and the viscous friction are not neglected in the fluid. The vessel containing the fluid is embedded...
Dans cet article on s’intéresse à l’existence et l’unicité globale de solutions pour le système de Navier-Stokes à densité variable, lorsque la donnée initiale de la vitesse est dans l’espace de Besov homogène de régularité critique . Notons que ce résultat fait suite aux résultats de H. Abidi qui a généralisé le travail de R. Danchin. Toutefois, dans les travaux antérieurs, l’existence de la solution est obtenue pour et l’unicité est démontrée sous l’hypothèse plus restrictive Notre résultat...
In this paper we study the nonlinear Dirichlet problem involving p(x)-Laplacian (hemivariational inequality) with nonsmooth potential. By using nonsmooth critical point theory for locally Lipschitz functionals due to Chang [6] and the properties of variational Sobolev spaces, we establish conditions which ensure the existence of solution for our problem.